If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+11g-60=0
a = 1; b = 11; c = -60;
Δ = b2-4ac
Δ = 112-4·1·(-60)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-19}{2*1}=\frac{-30}{2} =-15 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+19}{2*1}=\frac{8}{2} =4 $
| (5x2−4)1/4=x | | 6x-2=1-4x | | 4/5*x+x=180 | | 6p^2=2p+60 | | 7^5x=290 | | (4.20x-5.80)(7.20x-9.20)=9.10x+9.50 | | 180=2x+56 | | 1.6/x=1/5 | | 8u+7=u. | | 6–5=13-3x | | 1.6/x=5 | | -27=5x+3 | | 6(x-3)=2x=38 | | -6=6+w/4 | | 45/90=3x+2 | | -4x-7(-3x-60=195 | | 9x=9+12x | | 2(x+3x)=40 | | x²-5=20 | | 13+q=15 | | 6-t=7 | | 4/5y-3/2=-1/3 | | 10x-23=64 | | 6x+2(x-6)=(3-1)+(6-8) | | 3x+4+6x+59=180 | | X^2-3.5x-14.3=3.31 | | 3x+4+6x+59=1280 | | 10x+60x=250 | | 6x+2x(x-6)=(3-1)+(6-8) | | 29904+0.30x+0.20x=x | | 1/2(x-6)=-5 | | 12x−9=135. |